Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Behav Brain Res ; 468: 115035, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703793

RESUMO

Parkinson's Disease is a progressive neurodegenerative disorder characterized by motor symptoms resulting from the loss of nigrostriatal dopaminergic neurons. Kisspeptins (KPs) are a family of neuropeptides that are encoded by the Kiss-1 gene, which exert their physiological effects through interaction with the GPR54 receptor. In the current investigation, we investigated the prospective protective effects of central KP-54 treatments on nigrostriatal dopaminergic neurons and consequent motor performance correlates in 6-hydroxydopamine (6-OHDA)-lesioned rats. Male adult Sprague Dawley rats underwent stereotaxic injection of 6-OHDA into the right medial forebrain bundle to induce hemiparkinsonism. Following surgery, rats received chronic central treatments of nasal or intracerebroventricular KP-54 (logarithmically increasing doses) for seven consecutive days. Motor performance was evaluated seven days post-surgery utilizing the open field test and catalepsy test. The levels of dopamine in the striatum were determined with mass spectrometry. Immunohistochemical analysis was conducted to assess the immunoreactivities of tyrosine hydroxylase (TH) and the GPR54 in the substantia nigra. The dose-response curve revealed a median effective dose value of ≈3 nmol/kg for both central injections. Due to its non-invasive and effective nature, nasal administration was utilized in the second phase of our study. Chronic administration of KP-54 (3nmol/kg, nasally) significantly protected 6-OHDA-induced motor deficits. Nasal KP-54 attenuated the loss of nigrostriatal dopaminergic neurons induced by 6-OHDA. Additionally, significant correlations were observed between motor performance and nigrostriatal dopamine levels. Immunohistochemical analysis demonstrated the localization of the GPR54 within TH-positive nigral cells. These findings suggest the potential efficacy of central KP-54 on motor impairments in hemiparkinsonism.

2.
J Neurosci Res ; 102(1): e25247, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37800665

RESUMO

This study aimed to assess the focal cerebral ischemia-induced changes in learning and memory together with glutamatergic pathway in rats and the effects of treatment of the animals with transcranial Direct Current Stimulation (tDCS). One hundred male rats were divided into five groups as sham, tDCS, Ischemia/Reperfusion (IR), IR + tDCS, and IR + E-tDCS groups. Learning, memory, and locomotor activity functions were evaluated by behavioral experiments in rats. Glutamate and glutamine levels, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptor (AMPAR1), N-Methyl-D-Aspartate receptors (NMDAR1 and NMDAR2A), vesicular glutamate transporter-1 (VGLUT-1), and excitatory amino acid transporters (EAAT1-3) mRNA expressions in hippocampus tissues were measured. Ischemic areas were analyzed by TTC staining. The increase was observed in IR + tDCS, and IR + E-tDCS groups compared to the IR group while a significant decrease was observed in IR group compared to the sham in the locomotor activity, learning, and memory tests. While glutamate and glutamine levels, AMPAR1, NMDAR1, NMDAR2A, VGLUT1, and EAAT1 mRNA expressions were significantly higher in IR group compared to the sham group, it was found to be significantly lower in IR + tDCS and IR + E-tDCS groups compared to the IR group. EAAT2 and EAAT3 mRNA expressions were significantly higher in IR + tDCS and IR + E-tDCS groups compared to the IR group. Ischemic areas were significantly decreased in IR + tDCS and IR + E-tDCS groups compared to the IR group. Current results suggest that tDCS application after ischemia improves learning and memory disorders and these effects of tDCS may be provided through transporters that regulate glutamate levels.


Assuntos
Isquemia Encefálica , Estimulação Transcraniana por Corrente Contínua , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Glutamina/metabolismo , Hipocampo/metabolismo , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/farmacologia , Isquemia/metabolismo , Glutamatos , RNA Mensageiro/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-37741047

RESUMO

BACKGROUND: Sphingolipid species in the lung epithelium have a critical role for continuity of membrane structure, vesicular transport, and cell survival. Sphingolipid species were reported to have a role in the inflammatory etiology of cystic fibrosis by previous work. The aim of the study was to investigate the levels of plasma sphingomyelin and ceramide in adult cystic fibrosis (CF) patients and compared with healthy controls. MATERIALS AND METHODS: Blood samples were obtained from CF patients at exacerbation (n = 15), discharge (n = 13) and stable periods (n = 11). Healthy individuals (n = 15) of similar age served as control. Levels of C16-C24 sphingomyelin and C16-C24 ceramide were measured in the plasma by LC-MS/MS. Also, cholesterol and triglyceride levels were determined in plasma samples of the patients at stable period. RESULTS: All measured sphingomyelin and ceramide levels in all periods of CF patients were significantly lower than healthy controls except C16 sphingomyelin level in the stable period. However, plasma Cer and SM levels among exacerbation, discharge, and stable periods of CF were not different. CF patients had significantly lower cholesterol levels compared to healthy individuals. We found significant correlation of cholesterol with C16 sphingomyelin. CONCLUSION: We observed lower plasma Cer and SM levels in adult CF patients at exacerbation, discharge, and stable periods compared to healthy controls. We didn't find any significant difference between patient Cer and SM levels among these three periods. Our limited number of patients might have resulted with this statistical insignificance. However, percentage of SM16 levels were increased at discharge compared to exacerbation levels, while percentage of Cer16 and Cer 20 decreased at stable compared to exacerbation. Inclusion of a larger number of CF patients in such a follow up study may better demonstrate any possible difference between exacerbation, discharge, and stable periods.

4.
Pflugers Arch ; 475(10): 1177-1192, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37582694

RESUMO

Asperglaucide (ASP) is an aurantiamide, an effective constituent of purslane (Portulaca oleracea L.), a safe to eat greenery. Effects of ASP on endothelial function, endothelial nitric oxide synthase (eNOS) expression, vascular fluidity, renal and vascular reactive oxygen, and nitrogen species (ROS/RNS) production was examined in the two-kidney one-clip (2 K-1C) rat model of renovascular arterial hypertension. ASP toxicity, dose dependent eNOS gene expression and protein levels were also analyzed in human umbilical vein endothelial cells (HUVEC). The 2 K-1C model of hypertension was created via surgery and mean blood pressure (MBP) was measured by tail-cuff method during four weeks of ASP treatment. Erythrocyte deformability was monitored by rotational ektacytometry, while vascular constrictor and dilator responses were determined in organ baths. eNOS gene expression and protein levels were assessed in thoracic aorta and HUVEC. MBP was significantly decreased in hypertensive rats treated with ASP. Endothelium dependent vascular dilator and constrictor responses were also considerably improved following ASP treatment. There was a notable increase in red blood cell deformability in hypertensive rats treated with ASP as compared to hypertensive rats alone. A significant increase was observed in eNOS gene expression and protein levels in both normotensive and hypertensive rats treated with ASP. Treatment of HUVEC with 3 µM ASP notably increased eNOS mRNA and protein levels. In conclusion, ASP lowered blood pressure, improved endothelium-mediated relaxation, decreased renovascular ROS/RNS production in hypertensive rats. ASP also increased eNOS protein expression in aorta and HUVEC at nontoxic doses. ASP may have future potential as an anti-hypertensive agent.


Assuntos
Hipertensão Renovascular , Hipertensão , Ratos , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo , Hipertensão Renovascular/tratamento farmacológico , Hipertensão/metabolismo , Pressão Sanguínea , Óxido Nítrico Sintase Tipo III/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo
5.
J Biochem Mol Toxicol ; 37(12): e23491, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37561044

RESUMO

Prilocaine (PRL) is a common local anesthetic. Despite the successful use of regional anesthesia for intraocular surgery, there are associated side effects that may affect the retina in case of accidental intravitreal injection. This study examined the signal transduction pathways activated by PRL toxicity and determined the protective role of nitric oxide synthase-2 (NOS2) inhibition in cultured human-derived retinal pigment epithelial cells (ARPE-19). Toxicity analysis was performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay to detect the toxic dose of PRL and protective effectiveness of asperglaucide (ASP), an NOS2 inhibitor. Nuclear factor kappa B p65 (NF-κB p65), phosphorylated NF-κB p65, phospho-protein kinase B (AKT), NOS2, nitrotyrosine, and cleaved caspase-3 protein levels were evaluated by immunofluorescence staining and/or western blot analysis. Interleukin-6 (IL-6) and nitrated protein levels were quantified using an immunoassay, whereas caspase-3 activity and nitrite/nitrate levels were measured using a fluorometric method. A significant increase in NF-κB p65, and phosphorylated NF-κB p65 and AKT levels due to PRL toxicity was observed. Similarly, IL-6, NOS2, nitrite/nitrate, and nitrotyrosine levels were significantly higher in PRL-treated cells than in control cells. Application of ASP to PRL-treated cells reduced NF-κB p65, and phosphorylated NF-κB p65 and AKT to basal levels. IL-6, NOS2, nitrite/nitrate, and nitrotyrosine levels also considerably decreased following ASP treatment in cells experiencing PRL-induced toxicity. Moreover, the caspase-3-dependent apoptotic pathway was not activated. Our results indicate that ASP could ameliorate PRL-induced activation of NF-κB p65 that led to inflammation in cultured ARPE-19 cells.


Assuntos
Interleucina-6 , NF-kappa B , Humanos , NF-kappa B/metabolismo , Caspase 3/metabolismo , Interleucina-6/farmacologia , Prilocaína/farmacologia , Nitratos , Nitritos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células Cultivadas
6.
Clin Biochem ; 118: 110592, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37277027

RESUMO

OBJECTIVES: Gestational diabetes mellitus (GDM) leads to changes in the lipid metabolism. In this study, we aimed to compare serum levels of LDL subfractions, betatrophin, and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) between patients with GDM and healthy pregnant women. DESIGN AND METHODS: We designed a prospective case-control study with 41 pregnant women. Subjects were divided into two groups: GDM and control. Betatrophin and GPIHBP1 levels were measured by ELISA method. Lipoprint LDL subfraction kit was used to perform LDL subfraction analysis electrophoretically. RESULTS: Serum levels of LDL6 subfraction, betatrophin, and GPIHBP1 were found to be higher in GDM group compared to the controls (p < 0.001). The mean LDL size were also found larger in GDM group. A positive correlation was found between betatrophin and GPIHBP1 levels (rho = 0.96, p < 0.001). CONCLUSIONS: Our findings suggest that betatrophin, and GPIHBP1 levels were found to be increased in GDM. This maybe the result of adaptive mechanisms in response to insulin resistance, but also this relationship should be evaluated for their effects on impaired lipid metabolism and lipoprotein lipase metabolism. There is a need for further prospective studies with larger samples to fully elucidate the mechanisms of this relationship both in pregnant patients and the other patient groups.


Assuntos
Diabetes Gestacional , Hormônios Peptídicos , Receptores de Lipoproteínas , Humanos , Gravidez , Feminino , Diabetes Gestacional/metabolismo , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Estudos Prospectivos , Estudos de Casos e Controles
7.
Prostaglandins Other Lipid Mediat ; 166: 106719, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36863606

RESUMO

PURPOSE: The aim of the study was to investigate changes in serum sphingolipid levels and high density lipoprotein (HDL) subtypes with relation to low-density lipoprotein cholesterol (LDL-C), non-HDL-C and triglyceride (TG) levels in type 2 diabetes mellitus (T2DM) patients. METHODS: Blood was obtained from 60 patients with T2DM. Levels of sphingosine-1-phosphate (S1P), C16-C24 sphingomyelins (SMs), C16-C24 ceramides (CERs), and C16 CER-1 P were determined by LC-MS/MS. Serum concentrations of cholesterol ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT) and apolipoprotein A-1 (apoA-I) were analyzed by enzyme-linked immunosorbent assay (ELISA). HDL subfraction analysis was performed by Disc polyacrylamide gel electrophoresis. RESULTS: C16 SM, C24 SM, C24-C16 CER and C16 CER-1 P levels were significantly increased in T2DM patients with LDL-C above 160 mg/dL, compared to those with LDL-C below 100 mg/dL. A significant correlation was observed between C24:C16 SM, C24:C16 CER ratios and LDL-C, non HDL-C levels. Higher serum levels of C24 SM, C24-C18 CER and C24:C16 SM ratio was seen in obese T2DM patients (BMI>30) compared to those with BMI 27-30. Patients with fasting TG levels below 150 mg/dL had significantly increased HDL-large and significantly decreased HDL-small fractions compared to those with fasting TG levels above 150 mg/dL. CONCLUSION: Obese dyslipidemic T2DM patients had increased levels of serum sphingomyelins, ceramides and HDL-small fractions. The ratio of serum C24:C16 SM, C24:C16 CER and long chain CER levels may be used as diagnostic and prognostic indicators of dyslipidemia in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Esfingomielinas , Humanos , LDL-Colesterol , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ceramidas , Lipoproteínas HDL , Obesidade/complicações , HDL-Colesterol/metabolismo
8.
Exp Gerontol ; 169: 111972, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36216130

RESUMO

Adropin is a protein in the brain that decreases with age. Exercise has a protective effect on the endothelium by increasing the level of adropin in circulation. In this study, whether adropin, whose level in the brain decreases with age, may increase with swimming exercise, and exhibit a protective effect was investigated. Young and aged male Sprague Dawley rats were submitted to 1 h of swimming exercise every day for 8 weeks. Motor activity parameters were recorded at the end of the exercise or waiting periods before the animals were euthanized. Increased motor functions were observed in only the young rats that exercised regularly. Adropin levels in the plasma, and the adropin and VEGFR2 immunoreactivities and p-Akt (Ser473) levels in the frontal cortex were significantly increased in the aged rats that exercised regularly. It was also observed that the BAX/Bcl2 ratio and ROS-RNS levels decreased, while the TAC levels increased in the aged rats that exercised regularly. The results of the study indicated that low-moderate chronic swimming exercise had protective effects by increasing the level of adropin in the frontal cortex tissues of the aged rats. Adropin is thought to achieve this effect by increasing the VEGFR2 expression level and causing Akt (Ser473) phosphorylation. These results indicated that an exercise-mediated increase in endogenous adropin may be effective in preventing the destructive effects of aging on the brain.


Assuntos
Condicionamento Físico Animal , Natação , Animais , Ratos , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Encéfalo/metabolismo
10.
Toxicol Res (Camb) ; 11(4): 683-695, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36051659

RESUMO

Accumulation of lipids and their intermediary metabolites under endoplasmic reticulum (ER) stress instigates metabolic failure, described as lipotoxicity, in the kidney. This study aimed to determine ER-stress-related sphingolipid and polyunsaturated fatty acid (PUFA) changes in human kidney cells. Tunicamycin (TM) was employed to induce ER stress and an ER stress inhibitor, tauroursodeoxycholic acid (TUDCA), was given to minimize cytotoxicity. Cell viability was determined by MTT assay. Sphingomyelin (SM), ceramide (CER), and PUFA levels were measured by LC-MS/MS. Glucose-regulated protein 78-kd (GRP78), cleaved caspase-3 and cyclooxygenase-1 (COX-1) levels were assessed by immunofluorescence. Cytosolic phospholipase A2 (cPLA2), total COX, and prostaglandin E2 (PGE2) were measured to evaluate changes in enzyme activity. Decreased cell viability was observed in TM treated cells. Administration of TUDCA following TM treatment significantly increased cell viability compared to TM treatment alone. Tunicamycin-induced ER stress was confirmed by significantly increased protein levels of GRP78. A significant increase was observed in C18-C24 CERs and caspase-3 activity, while a significant decrease occurred in sphingosine-1-phosphate (S1P) and cPLA2 activity in cells treated with TM versus controls. The decrease in cPLA2 activity was accompanied by significantly increased PUFA levels in TM treated cells. TUDCA treatment in conjunction with TM significantly decreased ER stress, C18-C24 CERs, caspase 3 activity, and increased S1P levels. Results show the buildup of long chain CERs and PUFAs in kidney cells undergoing ER stress alongside increased apoptotic activity. TUDCA administration, along with TM treatment alleviated the buildup of CERs and TM-induced apoptotic activity in kidney epithelial cells.

11.
Brain Res ; 1792: 148031, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35901964

RESUMO

Insufficient dietary biotin intake, biotinidase deficiency, drug-biotin interactions can cause biotin deficiency which may result in central nervous system dysfunctions. We hypothesized that biotin deficiency could disrupt learning and memory functions by altering glutamate, glutamine, dopamine levels and protein kinase A (PKA) activity in the hippocampus. Sixteen female and 4 male Wistar rats were mated and females were separated into 4 groups. Three pups were selected from each mother and a total of 48 pups were divided into the following experimental groups. NN group, normal diet in the prenatal and postnatal period. NB group, normal diet in the prenatal and a biotin-deficient diet in the postnatal period. BN group: biotin-deficient diet in the prenatal and a normal diet in the postnatal period, BB group: biotin-deficient diet in both the prenatal and postnatal period. Open Field, Y-Maze, Object Location, and Novel Object Recognition Tests were performed in all groups and rats were sacrificed. Glutamine, glutamate, dopamine levels and PKA activity were analyzed in the hippocampi. In the open field test, distance and velocity values of NB, BN and BB groups were decreased with respect to the NN group. Learning and memory functions of NB, BN and BB groups were found to be impaired in behavioral tests. Dopamine levels and PKA activity were also decreased in all rat pups fed with a biotin deficient diet. In conclusion, we demonstrated that biotin deficiency deteriorates short-term memory and locomotor activity. This impairment may relate to decreased dopamine levels and PKA activity in the hippocampus.


Assuntos
Deficiência de Biotinidase , Animais , Biotina/metabolismo , Deficiência de Biotinidase/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dopamina/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Hipocampo/metabolismo , Masculino , Memória de Curto Prazo , Gravidez , Ratos , Ratos Wistar
12.
Neurochem Res ; 47(11): 3331-3343, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35895153

RESUMO

In this study, the effects of different doses of sulfite on learning, memory, and long term potentiation as well as the relationship of these effects with acetylcholine pathways, Arc and synapsin 1 levels were investigated. Sixty male Wistar albino rats were randomly divided into three groups as control, S100, and S260. Sodiummetabisulfite (S100;100 mg/kg/day, S260;260 mg/kg/day) was given by oral administration. Behavioral changes were evaluated. After long term potentiation recordings from the perforant pathway-dentate gyrus synapses, animals were sacrificed. Acetylcholinesterase activity, choline acetyltransferase activity, acetylcholine level as well as Arc and Synapsin 1 expressions were analyzed on the hippocampi. The total distance and average velocity values in the open field and Morris water maze tests increased in the sulfite groups, while the discrimination index in the novel object recognition test decreased compared to controls. Acetylcholine levels and choline acetyltransferase activity were also increased in the sulfite groups, while acetylcholinesterase activity was decreased compared to controls. Sulfite intake attenuated long term potentiation in the hippocampus. It has been observed that the excitatory postsynaptic potential slope and population spike amplitude of the field potentials obtained in sulfite groups decreased. This impairment was accompanied by a decrease in Arc and synapsin 1 expressions. In conclusion, it has been shown that sulfite intake in adults impairs learning and memory, possibly mediated by the cholinergic pathway. It is considered that the decrement in Arc and synapsin expressions may play a role in the mechanism underlying the impairment in long term potentiation caused by toxicity.


Assuntos
Acetilcolina , Giro Denteado , Acetilcolina/farmacologia , Acetilcolinesterase , Animais , Colina O-Acetiltransferase , Colinérgicos/farmacologia , Hipocampo , Potenciação de Longa Duração , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Wistar , Sulfitos/farmacologia , Sinapsinas
13.
Neuropharmacology ; 208: 108977, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35092748

RESUMO

Parkinson's disease (PD) is characterized by motor and non-motor symptoms associated with dopaminergic and non-dopaminergic injury. Vortioxetine is a multimodal serotonergic antidepressant with potential procognitive effects. This study aimed to explore the effects of vortioxetine on motor functions, spatial learning and memory, and depression-like behavior in the rotenone-induced rat model of PD. Male Sprague-Dawley rats were daily administered with the rotenone (2 mg kg-1, s.c.) and/or vortioxetine (10 mg kg-1, s.c.) for 28 days. Motor functions (rotarod, catalepsy, open-field), depression-like behaviors (sucrose preference test), anxiety (elevated plus maze), and spatial learning and memory abilities (novel object recognition and Morris water maze) were evaluated in behavioral tests. Then immunohistochemical, neurochemical, and biochemical analysis on specific brain areas were performed. Vortioxetine treatment markedly reduced rotenone-induced neurodegeneration, improved motor and cognitive dysfunction, decreased depression-like behaviors without affecting anxiety-like parameters. Vortioxetine also restored the impaired inflammatory response and affected neurotransmitter levels in brain tissues. Interestingly, vortioxetine was thought to trigger a sort of dysfunction in basal ganglia as evidenced by increased Toll-like receptor-2 (TLR-2) and decreased TH immunoreactivity only in substantia nigra tissue of PD rats compared to the control group. The present study indicates that vortioxetine has beneficial effects on motor dysfunction as well as cognitive impairment associated with neurodegeneration in the rotenone-induced PD model. Possible mechanisms underlying these beneficial effects cover TLR-2 inhibition and neurochemical restoration of vortioxetine.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Masculino , Doenças Neuroinflamatórias , Ratos , Ratos Sprague-Dawley , Rotenona/toxicidade , Receptor 2 Toll-Like , Vortioxetina
14.
Int J Neurosci ; 132(9): 901-909, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33175581

RESUMO

BACKGROUND: Natural polyphenols have been investigated and are claimed to be mediators of the relationship between dopamine (DA) and memory. Therefore, we aimed to measure and evaluate the effect of syringic acid (SA) on DA expression by behavioral tests related to short-term and recognition memory in Wistar rats. METHODS: Rats were randomly assigned to control (0.5 cc corn oil, n = 10), SA (25 mg/kg/day, o.g, n = 10), Deltamethrin (DTM) (1.28 mg/kg/day o.g, n = 10) and DTM (1.28 mg/kg/day o.g, n = 10) + SA (25 mg/kg/day) groups. The Y-maze and Novel Object Recognition (NOR) tests were performed to assess cognitive and behavioral functions in the rats. Dopamine levels in the hippocampus were measured by mass spectrometry. RESULTS: Syringic acid significantly increased DA (5.45 ± 1.06 ng/ml, p = 0.0026, p < 0.05) compared with the other groups. SA increased the percent alternation (34.85 ± 0.72%, p < 0.05), time spent in the novel arm (2.88 ± 0.18 min, p < 0.05), and frequency of novel arm entries (44.91 ± 2.28%, p < 0.05), of the rats after the Y-maze test. The SA elevated the discrimination index (70.42 ± 3.59%, p < 0.001), and exploration time (30.44 ± 1.8 sec, p < 0.05) in the NOR test, and increased the short term and recognition memory in behavioral tests. CONCLUSION: Our findings support the hypothesis that SA-induced DA levels of the hippocampus may facilitate recognition and short-term memory in Wistar rats through the activation of dopaminergic receptors or pathways during the learning process, and that this can be seen in the cognitive behavior of SA-treated rats.


Assuntos
Dopamina , Hipocampo , Animais , Cognição , Dopamina/metabolismo , Ácido Gálico/análogos & derivados , Hipocampo/metabolismo , Aprendizagem em Labirinto , Memória de Curto Prazo , Ratos , Ratos Wistar
15.
Hippocampus ; 32(4): 253-263, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34971006

RESUMO

Adropin is a secreted peptide, which is composed of 43 amino acids and shows an effective role in regulating energy metabolism and insulin resistance. Motor coordination and locomotor activity were improved by adropin in the cerebellum. However, it is not known whether adropin administration has an effect on spatial learning and memory. In this study, we investigated the effect of adropin on spatial learning and memory and characterized the biochemical properties of adropin in the hippocampus. Thirty male Sprague-Dawley rats were randomly divided into two groups as control and adropin groups. The control group received 0.9% NaCl intracerebroventricular for 6 days, while the adropin groups received 1 nmol of adropin dissolved in 0.9% NaCl (for 6 days). The Morris water maze, Y maze, and object location recognition tests were performed to evaluate learning and memory. Also, the locomotor activity tests were measured to assess the motor function. The expression of Akt, phospho-Akt, CREB, phospho-CREB, Erk1/2, phospho-Erk1/2, glycogen synthase kinase 3 ß (GSK3ß), phospho-GSK3ß, brain-derived neurotrophic factor (BDNF), and N-methyl-d-aspartate receptor NR2B subunit were determined in the hippocampal tissues by using western blot. Behavior tests showed that adropin significantly increase spatial memory performance. Meanwhile, the western blot analyses revealed that the phosphorylated form of the Akt and CREB were enhanced with adropin administration in the hippocampus. Also, the expression of BDNF showed an enhancement in adropin group in comparison to the control group. In conclusion, we have shown for the first time that adropin exerts its enhancing effect on spatial memory capacity through Akt/CREB/BDNF signaling pathways.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Proteínas Proto-Oncogênicas c-akt , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Teste do Labirinto Aquático de Morris , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Solução Salina/metabolismo , Solução Salina/farmacologia
16.
Naunyn Schmiedebergs Arch Pharmacol ; 394(11): 2259-2272, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34436652

RESUMO

Cyclooxygenase-2 (COX-2) is expressed in a variety of human colorectal cancer cells and can contribute to carcinogenesis. This study aimed to investigate the effect of diclofenac (DCF), a selective COX-2 inhibitor, on cell adhesion molecules and apoptosis in human colon adenocarcinoma cells. Levels of homing cell adhesion molecule (H-CAM, CD44), intercellular adhesion molecule-1 (ICAM-1, CD54), vascular cell adhesion molecule-1 (VCAM-1, CD106), and epithelial cell adhesion molecule (EpCAM, CD326) were evaluated in cancer cells overexpressing (HT29) or not expressing (HCT116) COX-2. Cell viability was determined by MTT assay, COX-2 protein levels and activity were assessed by immunofluorescence and fluorometric analysis, respectively. Endogenous levels of polyunsaturated fatty acids (PUFAs) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) while expression of cell adhesion molecules was analyzed by flow cytometry. Annexin V-FITC/propidium iodide-labelling and fluorometric caspase-3 activity measurements were carried out to determine apoptosis. Flow cytometry analysis revealed that the percentage of CD44 and ICAM-1 staining in HCT116 cells was significantly lower compared to HT29 cells. In HT29 cells, phorbol 12-myristate 13-acetate (PMA) induced COX-2 expression and increased CD44 and ICAM-1 levels were down-regulated by diclofenac. Stimulation of COX-2 activity in HT29 cells via PMA significantly decreased diclofenac associated increase in PUFA levels. Treatment with both diclofenac and PMA significantly increased the number of apoptotic cells and caspase-3 activity in colon adenocarcinoma cells compared to control groups. In conclusion, diclofenac's effect to retard colorectal tumor growth and metastasis occurs in COX-2 overexpressing colon cancer cells by increased apoptosis and decreased expression of CD44 and ICAM-1.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Inibidores de Ciclo-Oxigenase/farmacologia , Diclofenaco/farmacologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Ciclo-Oxigenase 2/genética , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Receptores de Hialuronatos/genética , Molécula 1 de Adesão Intercelular/genética , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia
17.
Transplant Proc ; 53(7): 2227-2233, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34412916

RESUMO

BACKGROUND: The aim of this study was to evaluate changes in serum levels of S100ß, neuron-specific enolase, glial fibrillary acidic protein in living donors and recipients after kidney transplantation. METHODS: We enrolled 56 patients into the study. Of these, 27 underwent donor nephrectomy (group D), and the remaining 29 underwent kidney transplantation (recipient, group R). Neuromarkers were measured in samples obtained before the procedure, on postoperative day 7, and at 1 month postoperatively. RESULTS: Postoperative kidney functions were impaired in patients who underwent living donor nephrectomy compared with their preoperative levels (P < .001), although no significant difference was observed in their neuromarkers. The postoperative delirium rating scale was also impaired after living donor nephrectomy compared with preoperative levels (P < .05). Postoperative kidney functions were improved (P < .001), and a progressive decrease in neuromarker levels (P < .05) was observed in kidney transplant recipients compared with their preoperative levels. Linear regression analysis showed a significant correlation between neuron-specific enolase, glial fibrillary acidic protein levels and kidney functions in recipients. CONCLUSION: The present study demonstrated that neuron-specific enolase and glial fibrillary acidic protein levels decrease in kidney transplant recipients and do not change in donors. This result indicated that there is no evidence of neurotoxicity in either recipients and donors in kidney transplantation.


Assuntos
Transplante de Rim , Proteína Glial Fibrilar Ácida , Humanos , Transplante de Rim/efeitos adversos , Doadores Vivos , Nefrectomia , Fosfopiruvato Hidratase , Estudos Prospectivos , Estudos Retrospectivos , Subunidade beta da Proteína Ligante de Cálcio S100 , Transplantados
18.
Turk J Med Sci ; 51(6): 3126-3135, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34289654

RESUMO

Background/aim: The present study proposes to investigate the effect of neuropeptide­S (NPS) on cognitive functions and depression-like behavior of MPTP-induced experimental model of Parkinson's disease (PD). Materials and methods: Three-month-old C57BL/6 mice were randomly divided into three groups as; Control, Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and MPTP + NPS 0.1 nmol (received intraperitoneal injection of MPTP and intracerebroventricular injection of NPS, 0.1 nmol for seven days). The radial arm maze and pole tests were carried out, and the levels of tyrosine hydroxylase (TH) were determined using western blotting. A mass spectrometer was used to measure the levels of dopamine, glutamic acid, and glutamine. Results: The T-turn and time to descend enhanced in MPTP group, while these parameters were decreased by NPS treatment. In the MPTP group, the number of working memory errors (WME) and reference memory errors (RME) increased, whereas NPS administration decreased both parameters. Sucrose preference decreased in the MPTP group while increasing in the NPS group. MPTP injection significantly reduced dopamine, glutamic acid, and glutamine levels. NPS treatment restored the MPTP-induced reduction in glutamine and glutamic acid levels. Conclusion: NPS may be involved in the future treatment of cognitive impairments and depression-like behaviors in PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Cognição/efeitos dos fármacos , Depressão/tratamento farmacológico , Neuropeptídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Animais , Modelos Animais de Doenças , Dopamina , Ácido Glutâmico , Glutamina , Camundongos , Camundongos Endogâmicos C57BL
19.
J Assist Reprod Genet ; 38(9): 2349-2361, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33993396

RESUMO

PURPOSE: Implantation is essential for a successful pregnancy. Despite the increasing number of studies, implantation is still an unknown process. This study aimed to determine whether sirtuin-1 has a role in embryo implantation in oxidative stress-induced mice. METHODS: Pregnant mice were separated into 5 groups: control, vehicle, paraquat, SRT1720, and SRT1720+Paraquat. Paraquat is a herbicide and is used to induce oxidative stress. SRT1720 is a specific sirtuin-1 activator. Implantation and inter-implantation sites were removed in the morning of the 5th day of pregnancy after Chicago blue injection was performed. Sirtuin-1 and Forkhead box O1 (FoxO1) were detected by immunohistochemistry and Western blot while acetylated lysine was evaluated by Western blot analysis. Reactive oxygen and nitrogen species (ROS/RNS) and superoxide dismutase (SOD) activity were determined by fluorometric and spectrometric methods, respectively. RESULTS: Although there was no embryo implantation in paraquat-treated mice, 5 out of 9 SRT1720+Paraquat-treated mice had implantation sites which were significantly higher compared to the paraquat-treated group. Sirtuin-1 and FoxO1 expressions were increased at implantation sites of SRT1720-treated mice. ROS/RNS levels were decreased, while deacetylated FoxO1 levels and SOD activity were increased in SRT1720-treated mice. CONCLUSION: Our findings suggest that sirtuin-1 may play a role in embryo implantation against oxidative stress through FoxO1-SOD signaling.


Assuntos
Implantação do Embrião/fisiologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Estresse Oxidativo , Paraquat/toxicidade , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Animais , Implantação do Embrião/efeitos dos fármacos , Feminino , Herbicidas/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Sirtuína 1/química , Sirtuína 1/genética
20.
Metab Brain Dis ; 36(5): 1003-1014, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33666819

RESUMO

6-Hydroxydopamine (6-OHDA) is a widely used chemical to model Parkinson's disease (PD) in rats. Syringic acid (SA) is a polyphenolic compound which has antioxidant and anti-inflammatory properties. The present study aimed to evaluate the neuroprotective role of SA in a rat model of 6-OHDA-induced PD. Parkinson's disease was created by injection of 6-OHDA into the medial forebrain bundle via stereotaxic surgery. Syringic acid was administered daily by oral gavage, before or after surgery. All groups were tested for locomotor activity, rotarod performance and catatony. Dopamine levels in SN were determined by an optimized multiple reaction monitoring method using ultra-fast liquid chromatography coupled with tandem mass spectrometry (MS/MS). The immunoreactivities for tyrosine hydroxylase (TH) and inducible nitric oxide synthase (iNOS) were detected by immunohistochemistry in frozen substantia nigra (SN) sections. Nitrite/nitrate levels, iNOS protein, total oxidant (TOS) and total antioxidant (TAS) status were assayed in SN tissue by standard kits. Motor dysfunction, impaired nigral dopamine release, increased iNOS expression and elevated nitrite/nitrate levels induced by 6-OHDA were significantly restored by SA treatment. Syringic acid significantly improved the loss of nigral TH-positive cells, while increasing TAS capacity and reducing TOS capacity in SN of PD rats. These data conclude that SA is a potential therapeutic agent for the treatment of 6-OHDA-induced rat model of PD. Syringic acid reduced the progression of PD via its neuroprotective, antioxidant and anti-inflammatory effects.


Assuntos
Ácido Gálico/análogos & derivados , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Substância Negra/efeitos dos fármacos , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Masculino , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Ratos , Ratos Wistar , Substância Negra/metabolismo , Espectrometria de Massas em Tandem , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA